Metamath Proof Explorer


Theorem restdis

Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion restdis A V B A 𝒫 A 𝑡 B = 𝒫 B

Proof

Step Hyp Ref Expression
1 distop A V 𝒫 A Top
2 elpw2g A V B 𝒫 A B A
3 2 biimpar A V B A B 𝒫 A
4 restopn2 𝒫 A Top B 𝒫 A x 𝒫 A 𝑡 B x 𝒫 A x B
5 1 3 4 syl2an2r A V B A x 𝒫 A 𝑡 B x 𝒫 A x B
6 velpw x 𝒫 B x B
7 sstr x B B A x A
8 7 expcom B A x B x A
9 8 adantl A V B A x B x A
10 velpw x 𝒫 A x A
11 9 10 syl6ibr A V B A x B x 𝒫 A
12 11 pm4.71rd A V B A x B x 𝒫 A x B
13 6 12 syl5bb A V B A x 𝒫 B x 𝒫 A x B
14 5 13 bitr4d A V B A x 𝒫 A 𝑡 B x 𝒫 B
15 14 eqrdv A V B A 𝒫 A 𝑡 B = 𝒫 B