Metamath Proof Explorer


Theorem resthaus

Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion resthaus J Haus A V J 𝑡 A Haus

Proof

Step Hyp Ref Expression
1 haustop J Haus J Top
2 cnhaus J Haus I A J : A J 1-1 A J I A J J 𝑡 A Cn J J 𝑡 A Haus
3 1 2 resthauslem J Haus A V J 𝑡 A Haus