Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
resthaus
Metamath Proof Explorer
Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario
Carneiro , 2-Mar-2015) (Proof shortened by Mario Carneiro , 25-Aug-2015)
Ref
Expression
Assertion
resthaus
⊢ J ∈ Haus ∧ A ∈ V → J ↾ 𝑡 A ∈ Haus
Proof
Step
Hyp
Ref
Expression
1
haustop
⊢ J ∈ Haus → J ∈ Top
2
cnhaus
⊢ J ∈ Haus ∧ I ↾ A ∩ ⋃ J : A ∩ ⋃ J ⟶ 1-1 A ∩ ⋃ J ∧ I ↾ A ∩ ⋃ J ∈ J ↾ 𝑡 A Cn J → J ↾ 𝑡 A ∈ Haus
3
1 2
resthauslem
⊢ J ∈ Haus ∧ A ∈ V → J ↾ 𝑡 A ∈ Haus