Metamath Proof Explorer


Theorem resthauslem

Description: Lemma for resthaus and similar theorems. If the topological property A is preserved under injective preimages, then property A passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses resthauslem.1 J A J Top
resthauslem.2 J A I S J : S J 1-1 S J I S J J 𝑡 S Cn J J 𝑡 S A
Assertion resthauslem J A S V J 𝑡 S A

Proof

Step Hyp Ref Expression
1 resthauslem.1 J A J Top
2 resthauslem.2 J A I S J : S J 1-1 S J I S J J 𝑡 S Cn J J 𝑡 S A
3 simpl J A S V J A
4 f1oi I S J : S J 1-1 onto S J
5 f1of1 I S J : S J 1-1 onto S J I S J : S J 1-1 S J
6 4 5 mp1i J A S V I S J : S J 1-1 S J
7 inss2 S J J
8 resabs1 S J J I J S J = I S J
9 7 8 ax-mp I J S J = I S J
10 1 adantr J A S V J Top
11 toptopon2 J Top J TopOn J
12 10 11 sylib J A S V J TopOn J
13 idcn J TopOn J I J J Cn J
14 12 13 syl J A S V I J J Cn J
15 eqid J = J
16 15 cnrest I J J Cn J S J J I J S J J 𝑡 S J Cn J
17 14 7 16 sylancl J A S V I J S J J 𝑡 S J Cn J
18 9 17 eqeltrrid J A S V I S J J 𝑡 S J Cn J
19 15 restin J A S V J 𝑡 S = J 𝑡 S J
20 19 oveq1d J A S V J 𝑡 S Cn J = J 𝑡 S J Cn J
21 18 20 eleqtrrd J A S V I S J J 𝑡 S Cn J
22 3 6 21 2 syl3anc J A S V J 𝑡 S A