Metamath Proof Explorer


Theorem restid

Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis restid.1 X = J
Assertion restid J V J 𝑡 X = J

Proof

Step Hyp Ref Expression
1 restid.1 X = J
2 uniexg J V J V
3 1 2 eqeltrid J V X V
4 1 eqimss2i J X
5 sspwuni J 𝒫 X J X
6 4 5 mpbir J 𝒫 X
7 restid2 X V J 𝒫 X J 𝑡 X = J
8 3 6 7 sylancl J V J 𝑡 X = J