Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
restid
Metamath Proof Explorer
Description: The subspace topology of the base set is the original topology.
(Contributed by Jeff Hankins , 9-Jul-2009) (Revised by Mario Carneiro , 13-Aug-2015)
Ref
Expression
Hypothesis
restid.1
⊢ X = ⋃ J
Assertion
restid
⊢ J ∈ V → J ↾ 𝑡 X = J
Proof
Step
Hyp
Ref
Expression
1
restid.1
⊢ X = ⋃ J
2
uniexg
⊢ J ∈ V → ⋃ J ∈ V
3
1 2
eqeltrid
⊢ J ∈ V → X ∈ V
4
1
eqimss2i
⊢ ⋃ J ⊆ X
5
sspwuni
⊢ J ⊆ 𝒫 X ↔ ⋃ J ⊆ X
6
4 5
mpbir
⊢ J ⊆ 𝒫 X
7
restid2
⊢ X ∈ V ∧ J ⊆ 𝒫 X → J ↾ 𝑡 X = J
8
3 6 7
sylancl
⊢ J ∈ V → J ↾ 𝑡 X = J