Metamath Proof Explorer


Theorem restidsing

Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009) (Proof shortened by JJ, 25-Aug-2021) (Proof shortened by Peter Mazsa, 6-Oct-2022)

Ref Expression
Assertion restidsing I A = A × A

Proof

Step Hyp Ref Expression
1 relres Rel I A
2 relxp Rel A × A
3 velsn x A x = A
4 velsn y A y = A
5 3 4 anbi12i x A y A x = A y = A
6 vex y V
7 6 ideq x I y x = y
8 3 7 anbi12i x A x I y x = A x = y
9 eqeq1 x = A x = y A = y
10 eqcom A = y y = A
11 9 10 bitrdi x = A x = y y = A
12 11 pm5.32i x = A x = y x = A y = A
13 8 12 bitri x A x I y x = A y = A
14 df-br x I y x y I
15 14 anbi2i x A x I y x A x y I
16 5 13 15 3bitr2ri x A x y I x A y A
17 6 opelresi x y I A x A x y I
18 opelxp x y A × A x A y A
19 16 17 18 3bitr4i x y I A x y A × A
20 1 2 19 eqrelriiv I A = A × A