Metamath Proof Explorer


Theorem restopn2

Description: If A is open, then B is open in A iff it is an open subset of A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion restopn2 J Top A J B J 𝑡 A B J B A

Proof

Step Hyp Ref Expression
1 elssuni B J 𝑡 A B J 𝑡 A
2 elssuni A J A J
3 eqid J = J
4 3 restuni J Top A J A = J 𝑡 A
5 2 4 sylan2 J Top A J A = J 𝑡 A
6 5 sseq2d J Top A J B A B J 𝑡 A
7 1 6 syl5ibr J Top A J B J 𝑡 A B A
8 7 pm4.71rd J Top A J B J 𝑡 A B A B J 𝑡 A
9 simpll J Top A J B A J Top
10 simplr J Top A J B A A J
11 ssidd J Top A J B A A A
12 simpr J Top A J B A B A
13 restopnb J Top A J A J A A B A B J B J 𝑡 A
14 9 10 10 11 12 13 syl23anc J Top A J B A B J B J 𝑡 A
15 14 pm5.32da J Top A J B A B J B A B J 𝑡 A
16 8 15 bitr4d J Top A J B J 𝑡 A B A B J
17 16 biancomd J Top A J B J 𝑡 A B J B A