Metamath Proof Explorer


Theorem restopn3

Description: If A is open, then A is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Assertion restopn3 J Top A J A J 𝑡 A

Proof

Step Hyp Ref Expression
1 simpr J Top A J A J
2 ssidd J Top A J A A
3 restopn2 J Top A J A J 𝑡 A A J A A
4 1 2 3 mpbir2and J Top A J A J 𝑡 A