Metamath Proof Explorer


Theorem restopnssd

Description: A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restopnssd.1 φ J Top
restopnssd.2 φ A J
Assertion restopnssd φ J 𝑡 A J

Proof

Step Hyp Ref Expression
1 restopnssd.1 φ J Top
2 restopnssd.2 φ A J
3 simpr φ x J 𝑡 A x J 𝑡 A
4 1 adantr φ x J 𝑡 A J Top
5 2 adantr φ x J 𝑡 A A J
6 restopn2 J Top A J x J 𝑡 A x J x A
7 4 5 6 syl2anc φ x J 𝑡 A x J 𝑡 A x J x A
8 3 7 mpbid φ x J 𝑡 A x J x A
9 8 simpld φ x J 𝑡 A x J
10 9 ssd φ J 𝑡 A J