Metamath Proof Explorer


Theorem restsn2

Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion restsn2 J TopOn X A X J 𝑡 A = 𝒫 A

Proof

Step Hyp Ref Expression
1 snssi A X A X
2 resttopon J TopOn X A X J 𝑡 A TopOn A
3 1 2 sylan2 J TopOn X A X J 𝑡 A TopOn A
4 topsn J 𝑡 A TopOn A J 𝑡 A = 𝒫 A
5 3 4 syl J TopOn X A X J 𝑡 A = 𝒫 A