Metamath Proof Explorer


Theorem restsspw

Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion restsspw J 𝑡 A 𝒫 A

Proof

Step Hyp Ref Expression
1 n0i x J 𝑡 A ¬ J 𝑡 A =
2 restfn 𝑡 Fn V × V
3 fndm 𝑡 Fn V × V dom 𝑡 = V × V
4 2 3 ax-mp dom 𝑡 = V × V
5 4 ndmov ¬ J V A V J 𝑡 A =
6 1 5 nsyl2 x J 𝑡 A J V A V
7 elrest J V A V x J 𝑡 A y J x = y A
8 6 7 syl x J 𝑡 A x J 𝑡 A y J x = y A
9 8 ibi x J 𝑡 A y J x = y A
10 inss2 y A A
11 sseq1 x = y A x A y A A
12 10 11 mpbiri x = y A x A
13 12 rexlimivw y J x = y A x A
14 9 13 syl x J 𝑡 A x A
15 velpw x 𝒫 A x A
16 14 15 sylibr x J 𝑡 A x 𝒫 A
17 16 ssriv J 𝑡 A 𝒫 A