Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restsspw | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | |
|
| 2 | restfn | |
|
| 3 | fndm | |
|
| 4 | 2 3 | ax-mp | |
| 5 | 4 | ndmov | |
| 6 | 1 5 | nsyl2 | |
| 7 | elrest | |
|
| 8 | 6 7 | syl | |
| 9 | 8 | ibi | |
| 10 | inss2 | |
|
| 11 | sseq1 | |
|
| 12 | 10 11 | mpbiri | |
| 13 | 12 | rexlimivw | |
| 14 | 9 13 | syl | |
| 15 | velpw | |
|
| 16 | 14 15 | sylibr | |
| 17 | 16 | ssriv | |