Metamath Proof Explorer


Theorem restsubel

Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restsubel.1 φ J V
restsubel.2 φ J J
restsubel.3 φ A J
Assertion restsubel φ A J 𝑡 A

Proof

Step Hyp Ref Expression
1 restsubel.1 φ J V
2 restsubel.2 φ J J
3 restsubel.3 φ A J
4 ineq1 x = J x A = J A
5 4 eqeq2d x = J A = x A A = J A
6 5 adantl φ x = J A = x A A = J A
7 incom J A = A J
8 7 a1i φ J A = A J
9 df-ss A J A J = A
10 3 9 sylib φ A J = A
11 8 10 eqtrd φ J A = A
12 11 eqcomd φ A = J A
13 2 6 12 rspcedvd φ x J A = x A
14 2 3 ssexd φ A V
15 elrest J V A V A J 𝑡 A x J A = x A
16 1 14 15 syl2anc φ A J 𝑡 A x J A = x A
17 13 16 mpbird φ A J 𝑡 A