Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
restt0
Next ⟩
restt1
Metamath Proof Explorer
Ascii
Unicode
Theorem
restt0
Description:
A subspace of a T_0 topology is T_0.
(Contributed by
Mario Carneiro
, 25-Aug-2015)
Ref
Expression
Assertion
restt0
⊢
J
∈
Kol2
∧
A
∈
V
→
J
↾
𝑡
A
∈
Kol2
Proof
Step
Hyp
Ref
Expression
1
t0top
⊢
J
∈
Kol2
→
J
∈
Top
2
cnt0
⊢
J
∈
Kol2
∧
I
↾
A
∩
⋃
J
:
A
∩
⋃
J
⟶
1-1
A
∩
⋃
J
∧
I
↾
A
∩
⋃
J
∈
J
↾
𝑡
A
Cn
J
→
J
↾
𝑡
A
∈
Kol2
3
1
2
resthauslem
⊢
J
∈
Kol2
∧
A
∈
V
→
J
↾
𝑡
A
∈
Kol2