Metamath Proof Explorer


Theorem resttopon

Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resttopon J TopOn X A X J 𝑡 A TopOn A

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 id A X A X
3 toponmax J TopOn X X J
4 ssexg A X X J A V
5 2 3 4 syl2anr J TopOn X A X A V
6 resttop J Top A V J 𝑡 A Top
7 1 5 6 syl2an2r J TopOn X A X J 𝑡 A Top
8 simpr J TopOn X A X A X
9 sseqin2 A X X A = A
10 8 9 sylib J TopOn X A X X A = A
11 simpl J TopOn X A X J TopOn X
12 3 adantr J TopOn X A X X J
13 elrestr J TopOn X A V X J X A J 𝑡 A
14 11 5 12 13 syl3anc J TopOn X A X X A J 𝑡 A
15 10 14 eqeltrrd J TopOn X A X A J 𝑡 A
16 elssuni A J 𝑡 A A J 𝑡 A
17 15 16 syl J TopOn X A X A J 𝑡 A
18 restval J TopOn X A V J 𝑡 A = ran x J x A
19 5 18 syldan J TopOn X A X J 𝑡 A = ran x J x A
20 inss2 x A A
21 vex x V
22 21 inex1 x A V
23 22 elpw x A 𝒫 A x A A
24 20 23 mpbir x A 𝒫 A
25 24 a1i J TopOn X A X x J x A 𝒫 A
26 25 fmpttd J TopOn X A X x J x A : J 𝒫 A
27 26 frnd J TopOn X A X ran x J x A 𝒫 A
28 19 27 eqsstrd J TopOn X A X J 𝑡 A 𝒫 A
29 sspwuni J 𝑡 A 𝒫 A J 𝑡 A A
30 28 29 sylib J TopOn X A X J 𝑡 A A
31 17 30 eqssd J TopOn X A X A = J 𝑡 A
32 istopon J 𝑡 A TopOn A J 𝑡 A Top A = J 𝑡 A
33 7 31 32 sylanbrc J TopOn X A X J 𝑡 A TopOn A