Database
BASIC TOPOLOGY
Topology
Subspace topologies
resttopon2
Next ⟩
rest0
Metamath Proof Explorer
Ascii
Unicode
Theorem
resttopon2
Description:
The underlying set of a subspace topology.
(Contributed by
Mario Carneiro
, 13-Aug-2015)
Ref
Expression
Assertion
resttopon2
⊢
J
∈
TopOn
⁡
X
∧
A
∈
V
→
J
↾
𝑡
A
∈
TopOn
⁡
A
∩
X
Proof
Step
Hyp
Ref
Expression
1
topontop
⊢
J
∈
TopOn
⁡
X
→
J
∈
Top
2
resttop
⊢
J
∈
Top
∧
A
∈
V
→
J
↾
𝑡
A
∈
Top
3
1
2
sylan
⊢
J
∈
TopOn
⁡
X
∧
A
∈
V
→
J
↾
𝑡
A
∈
Top
4
toponuni
⊢
J
∈
TopOn
⁡
X
→
X
=
⋃
J
5
4
ineq2d
⊢
J
∈
TopOn
⁡
X
→
A
∩
X
=
A
∩
⋃
J
6
5
adantr
⊢
J
∈
TopOn
⁡
X
∧
A
∈
V
→
A
∩
X
=
A
∩
⋃
J
7
eqid
⊢
⋃
J
=
⋃
J
8
7
restuni2
⊢
J
∈
Top
∧
A
∈
V
→
A
∩
⋃
J
=
⋃
J
↾
𝑡
A
9
1
8
sylan
⊢
J
∈
TopOn
⁡
X
∧
A
∈
V
→
A
∩
⋃
J
=
⋃
J
↾
𝑡
A
10
6
9
eqtrd
⊢
J
∈
TopOn
⁡
X
∧
A
∈
V
→
A
∩
X
=
⋃
J
↾
𝑡
A
11
istopon
⊢
J
↾
𝑡
A
∈
TopOn
⁡
A
∩
X
↔
J
↾
𝑡
A
∈
Top
∧
A
∩
X
=
⋃
J
↾
𝑡
A
12
3
10
11
sylanbrc
⊢
J
∈
TopOn
⁡
X
∧
A
∈
V
→
J
↾
𝑡
A
∈
TopOn
⁡
A
∩
X