Metamath Proof Explorer


Theorem resttopon2

Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resttopon2 J TopOn X A V J 𝑡 A TopOn A X

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 resttop J Top A V J 𝑡 A Top
3 1 2 sylan J TopOn X A V J 𝑡 A Top
4 toponuni J TopOn X X = J
5 4 ineq2d J TopOn X A X = A J
6 5 adantr J TopOn X A V A X = A J
7 eqid J = J
8 7 restuni2 J Top A V A J = J 𝑡 A
9 1 8 sylan J TopOn X A V A J = J 𝑡 A
10 6 9 eqtrd J TopOn X A V A X = J 𝑡 A
11 istopon J 𝑡 A TopOn A X J 𝑡 A Top A X = J 𝑡 A
12 3 10 11 sylanbrc J TopOn X A V J 𝑡 A TopOn A X