Metamath Proof Explorer


Theorem restuni

Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis restuni.1 X = J
Assertion restuni J Top A X A = J 𝑡 A

Proof

Step Hyp Ref Expression
1 restuni.1 X = J
2 1 toptopon J Top J TopOn X
3 resttopon J TopOn X A X J 𝑡 A TopOn A
4 2 3 sylanb J Top A X J 𝑡 A TopOn A
5 toponuni J 𝑡 A TopOn A A = J 𝑡 A
6 4 5 syl J Top A X A = J 𝑡 A