Metamath Proof Explorer


Theorem restuni2

Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis restin.1 X = J
Assertion restuni2 J Top A V A X = J 𝑡 A

Proof

Step Hyp Ref Expression
1 restin.1 X = J
2 simpl J Top A V J Top
3 inss2 A X X
4 1 restuni J Top A X X A X = J 𝑡 A X
5 2 3 4 sylancl J Top A V A X = J 𝑡 A X
6 1 restin J Top A V J 𝑡 A = J 𝑡 A X
7 6 unieqd J Top A V J 𝑡 A = J 𝑡 A X
8 5 7 eqtr4d J Top A V A X = J 𝑡 A