Step |
Hyp |
Ref |
Expression |
1 |
|
restuni3.1 |
|
2 |
|
restuni3.2 |
|
3 |
|
eluni2 |
|
4 |
3
|
biimpi |
|
5 |
4
|
adantl |
|
6 |
|
simpr |
|
7 |
|
elrest |
|
8 |
1 2 7
|
syl2anc |
|
9 |
8
|
adantr |
|
10 |
6 9
|
mpbid |
|
11 |
10
|
3adant3 |
|
12 |
|
simpl |
|
13 |
|
simpr |
|
14 |
12 13
|
eleqtrd |
|
15 |
14
|
ex |
|
16 |
15
|
3ad2ant3 |
|
17 |
16
|
reximdv |
|
18 |
11 17
|
mpd |
|
19 |
18
|
3exp |
|
20 |
19
|
rexlimdv |
|
21 |
20
|
adantr |
|
22 |
5 21
|
mpd |
|
23 |
|
elinel1 |
|
24 |
23
|
adantl |
|
25 |
|
simpl |
|
26 |
|
elunii |
|
27 |
24 25 26
|
syl2anc |
|
28 |
|
elinel2 |
|
29 |
28
|
adantl |
|
30 |
27 29
|
elind |
|
31 |
30
|
ex |
|
32 |
31
|
adantl |
|
33 |
32
|
rexlimdva |
|
34 |
22 33
|
mpd |
|
35 |
34
|
ralrimiva |
|
36 |
|
dfss3 |
|
37 |
35 36
|
sylibr |
|
38 |
|
elinel1 |
|
39 |
|
eluni2 |
|
40 |
38 39
|
sylib |
|
41 |
40
|
adantl |
|
42 |
1
|
adantr |
|
43 |
2
|
adantr |
|
44 |
|
simpr |
|
45 |
|
eqid |
|
46 |
42 43 44 45
|
elrestd |
|
47 |
46
|
3adant3 |
|
48 |
47
|
3adant1r |
|
49 |
|
simp3 |
|
50 |
|
simp1r |
|
51 |
|
elinel2 |
|
52 |
50 51
|
syl |
|
53 |
|
simpl |
|
54 |
|
simpr |
|
55 |
53 54
|
elind |
|
56 |
49 52 55
|
syl2anc |
|
57 |
|
eleq2 |
|
58 |
57
|
rspcev |
|
59 |
48 56 58
|
syl2anc |
|
60 |
59
|
3exp |
|
61 |
60
|
rexlimdv |
|
62 |
41 61
|
mpd |
|
63 |
62 3
|
sylibr |
|
64 |
37 63
|
eqelssd |
|