Metamath Proof Explorer


Theorem restuni4

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni4.1 φ A V
restuni4.2 φ B A
Assertion restuni4 φ A 𝑡 B = B

Proof

Step Hyp Ref Expression
1 restuni4.1 φ A V
2 restuni4.2 φ B A
3 incom B A = A B
4 3 a1i φ B A = A B
5 dfss B A B = B A
6 2 5 sylib φ B = B A
7 1 uniexd φ A V
8 7 2 ssexd φ B V
9 1 8 restuni3 φ A 𝑡 B = A B
10 4 6 9 3eqtr4rd φ A 𝑡 B = B