Metamath Proof Explorer


Theorem restuni5

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis restuni5.1 X = J
Assertion restuni5 J V A X A = J 𝑡 A

Proof

Step Hyp Ref Expression
1 restuni5.1 X = J
2 simpl J V A X J V
3 id A X A X
4 3 1 sseqtrdi A X A J
5 4 adantl J V A X A J
6 2 5 restuni4 J V A X J 𝑡 A = A
7 6 eqcomd J V A X A = J 𝑡 A