Metamath Proof Explorer


Theorem restuni6

Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni6.1 φ A V
restuni6.2 φ B W
Assertion restuni6 φ A 𝑡 B = A B

Proof

Step Hyp Ref Expression
1 restuni6.1 φ A V
2 restuni6.2 φ B W
3 eqid A = A
4 3 restin A V B W A 𝑡 B = A 𝑡 B A
5 1 2 4 syl2anc φ A 𝑡 B = A 𝑡 B A
6 5 unieqd φ A 𝑡 B = A 𝑡 B A
7 inss2 B A A
8 7 a1i φ B A A
9 1 8 restuni4 φ A 𝑡 B A = B A
10 incom B A = A B
11 10 a1i φ B A = A B
12 6 9 11 3eqtrd φ A 𝑡 B = A B