Metamath Proof Explorer


Theorem restutopopn

Description: The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017)

Ref Expression
Assertion restutopopn U UnifOn X A unifTop U unifTop U 𝑡 A = unifTop U 𝑡 A × A

Proof

Step Hyp Ref Expression
1 elutop U UnifOn X A unifTop U A X x A t U t x A
2 1 simprbda U UnifOn X A unifTop U A X
3 restutop U UnifOn X A X unifTop U 𝑡 A unifTop U 𝑡 A × A
4 2 3 syldan U UnifOn X A unifTop U unifTop U 𝑡 A unifTop U 𝑡 A × A
5 trust U UnifOn X A X U 𝑡 A × A UnifOn A
6 2 5 syldan U UnifOn X A unifTop U U 𝑡 A × A UnifOn A
7 elutop U 𝑡 A × A UnifOn A b unifTop U 𝑡 A × A b A x b u U 𝑡 A × A u x b
8 6 7 syl U UnifOn X A unifTop U b unifTop U 𝑡 A × A b A x b u U 𝑡 A × A u x b
9 8 simprbda U UnifOn X A unifTop U b unifTop U 𝑡 A × A b A
10 2 adantr U UnifOn X A unifTop U b unifTop U 𝑡 A × A A X
11 9 10 sstrd U UnifOn X A unifTop U b unifTop U 𝑡 A × A b X
12 simp-9l U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A U UnifOn X
13 simplr U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A t U
14 simp-4r U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A w U
15 ustincl U UnifOn X t U w U t w U
16 12 13 14 15 syl3anc U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A t w U
17 inimass t w x t x w x
18 ssrin t x A t x w x A w x
19 18 adantl U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A t x w x A w x
20 simpllr U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A u = w A × A
21 20 imaeq1d U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A u x = w A × A x
22 9 ad5antr U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A b A
23 simp-5r U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A x b
24 22 23 sseldd U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A x A
25 24 ad2antrr U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A x A
26 inimasn x V w A × A x = w x A × A x
27 26 elv w A × A x = w x A × A x
28 xpimasn x A A × A x = A
29 28 ineq2d x A w x A × A x = w x A
30 27 29 syl5eq x A w A × A x = w x A
31 incom w x A = A w x
32 30 31 eqtrdi x A w A × A x = A w x
33 25 32 syl U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A w A × A x = A w x
34 21 33 eqtrd U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A u x = A w x
35 19 34 sseqtrrd U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A t x w x u x
36 simp-5r U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A u x b
37 35 36 sstrd U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A t x w x b
38 17 37 sstrid U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A t w x b
39 imaeq1 v = t w v x = t w x
40 39 sseq1d v = t w v x b t w x b
41 40 rspcev t w U t w x b v U v x b
42 16 38 41 syl2anc U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A v U v x b
43 simp-4l U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b U UnifOn X A unifTop U
44 43 ad2antrr U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A U UnifOn X A unifTop U
45 1 simplbda U UnifOn X A unifTop U x A t U t x A
46 45 r19.21bi U UnifOn X A unifTop U x A t U t x A
47 44 24 46 syl2anc U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A t U t x A
48 42 47 r19.29a U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A v U v x b
49 simplr U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b u U 𝑡 A × A
50 sqxpexg A unifTop U A × A V
51 elrest U UnifOn X A × A V u U 𝑡 A × A w U u = w A × A
52 50 51 sylan2 U UnifOn X A unifTop U u U 𝑡 A × A w U u = w A × A
53 52 biimpa U UnifOn X A unifTop U u U 𝑡 A × A w U u = w A × A
54 43 49 53 syl2anc U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b w U u = w A × A
55 48 54 r19.29a U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b v U v x b
56 8 simplbda U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b
57 56 r19.21bi U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b u U 𝑡 A × A u x b
58 55 57 r19.29a U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b v U v x b
59 58 ralrimiva U UnifOn X A unifTop U b unifTop U 𝑡 A × A x b v U v x b
60 elutop U UnifOn X b unifTop U b X x b v U v x b
61 60 ad2antrr U UnifOn X A unifTop U b unifTop U 𝑡 A × A b unifTop U b X x b v U v x b
62 11 59 61 mpbir2and U UnifOn X A unifTop U b unifTop U 𝑡 A × A b unifTop U
63 df-ss b A b A = b
64 9 63 sylib U UnifOn X A unifTop U b unifTop U 𝑡 A × A b A = b
65 64 eqcomd U UnifOn X A unifTop U b unifTop U 𝑡 A × A b = b A
66 ineq1 a = b a A = b A
67 66 rspceeqv b unifTop U b = b A a unifTop U b = a A
68 62 65 67 syl2anc U UnifOn X A unifTop U b unifTop U 𝑡 A × A a unifTop U b = a A
69 fvex unifTop U V
70 elrest unifTop U V A unifTop U b unifTop U 𝑡 A a unifTop U b = a A
71 69 70 mpan A unifTop U b unifTop U 𝑡 A a unifTop U b = a A
72 71 ad2antlr U UnifOn X A unifTop U b unifTop U 𝑡 A × A b unifTop U 𝑡 A a unifTop U b = a A
73 68 72 mpbird U UnifOn X A unifTop U b unifTop U 𝑡 A × A b unifTop U 𝑡 A
74 4 73 eqelssd U UnifOn X A unifTop U unifTop U 𝑡 A = unifTop U 𝑡 A × A