Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
resubcl
Next ⟩
negreb
Metamath Proof Explorer
Ascii
Unicode
Theorem
resubcl
Description:
Closure law for subtraction of reals.
(Contributed by
NM
, 20-Jan-1997)
Ref
Expression
Assertion
resubcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
−
B
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
2
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
3
negsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
−
B
=
A
−
B
4
1
2
3
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
−
B
=
A
−
B
5
renegcl
⊢
B
∈
ℝ
→
−
B
∈
ℝ
6
readdcl
⊢
A
∈
ℝ
∧
−
B
∈
ℝ
→
A
+
−
B
∈
ℝ
7
5
6
sylan2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
−
B
∈
ℝ
8
4
7
eqeltrrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
−
B
∈
ℝ