Metamath Proof Explorer


Theorem resubdrg

Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion resubdrg SubRing fld fld DivRing

Proof

Step Hyp Ref Expression
1 recn x x
2 readdcl x y x + y
3 renegcl x x
4 1re 1
5 remulcl x y x y
6 rereccl x x 0 1 x
7 1 2 3 4 5 6 cnsubdrglem SubRing fld fld 𝑠 DivRing
8 df-refld fld = fld 𝑠
9 8 eleq1i fld DivRing fld 𝑠 DivRing
10 9 anbi2i SubRing fld fld DivRing SubRing fld fld 𝑠 DivRing
11 7 10 mpbir SubRing fld fld DivRing