Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
The ordered field of real numbers
resubgval
Next ⟩
replusg
Metamath Proof Explorer
Ascii
Unicode
Theorem
resubgval
Description:
Subtraction in the field of real numbers.
(Contributed by
Thierry Arnoux
, 30-Jun-2019)
Ref
Expression
Hypothesis
resubgval.m
⊢
-
˙
=
-
ℝ
fld
Assertion
resubgval
⊢
X
∈
ℝ
∧
Y
∈
ℝ
→
X
−
Y
=
X
-
˙
Y
Proof
Step
Hyp
Ref
Expression
1
resubgval.m
⊢
-
˙
=
-
ℝ
fld
2
resubdrg
⊢
ℝ
∈
SubRing
⁡
ℂ
fld
∧
ℝ
fld
∈
DivRing
3
2
simpli
⊢
ℝ
∈
SubRing
⁡
ℂ
fld
4
subrgsubg
⊢
ℝ
∈
SubRing
⁡
ℂ
fld
→
ℝ
∈
SubGrp
⁡
ℂ
fld
5
3
4
ax-mp
⊢
ℝ
∈
SubGrp
⁡
ℂ
fld
6
cnfldsub
⊢
−
=
-
ℂ
fld
7
df-refld
⊢
ℝ
fld
=
ℂ
fld
↾
𝑠
ℝ
8
6
7
1
subgsub
⊢
ℝ
∈
SubGrp
⁡
ℂ
fld
∧
X
∈
ℝ
∧
Y
∈
ℝ
→
X
−
Y
=
X
-
˙
Y
9
5
8
mp3an1
⊢
X
∈
ℝ
∧
Y
∈
ℝ
→
X
−
Y
=
X
-
˙
Y