Metamath Proof Explorer


Theorem resubgval

Description: Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis resubgval.m - ˙ = - fld
Assertion resubgval X Y X Y = X - ˙ Y

Proof

Step Hyp Ref Expression
1 resubgval.m - ˙ = - fld
2 resubdrg SubRing fld fld DivRing
3 2 simpli SubRing fld
4 subrgsubg SubRing fld SubGrp fld
5 3 4 ax-mp SubGrp fld
6 cnfldsub = - fld
7 df-refld fld = fld 𝑠
8 6 7 1 subgsub SubGrp fld X Y X Y = X - ˙ Y
9 5 8 mp3an1 X Y X Y = X - ˙ Y