Metamath Proof Explorer


Theorem resum2sqcl

Description: The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q Q = A 2 + B 2
Assertion resum2sqcl A B Q

Proof

Step Hyp Ref Expression
1 resum2sqcl.q Q = A 2 + B 2
2 simpl A B A
3 2 resqcld A B A 2
4 simpr A B B
5 4 resqcld A B B 2
6 3 5 readdcld A B A 2 + B 2
7 1 6 eqeltrid A B Q