Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resundir
Next ⟩
resindi
Metamath Proof Explorer
Ascii
Unicode
Theorem
resundir
Description:
Distributive law for restriction over union.
(Contributed by
NM
, 23-Sep-2004)
Ref
Expression
Assertion
resundir
⊢
A
∪
B
↾
C
=
A
↾
C
∪
B
↾
C
Proof
Step
Hyp
Ref
Expression
1
indir
⊢
A
∪
B
∩
C
×
V
=
A
∩
C
×
V
∪
B
∩
C
×
V
2
df-res
⊢
A
∪
B
↾
C
=
A
∪
B
∩
C
×
V
3
df-res
⊢
A
↾
C
=
A
∩
C
×
V
4
df-res
⊢
B
↾
C
=
B
∩
C
×
V
5
3
4
uneq12i
⊢
A
↾
C
∪
B
↾
C
=
A
∩
C
×
V
∪
B
∩
C
×
V
6
1
2
5
3eqtr4i
⊢
A
∪
B
↾
C
=
A
↾
C
∪
B
↾
C