Metamath Proof Explorer


Theorem resup

Description: The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion resup sup * < = +∞

Proof

Step Hyp Ref Expression
1 ioomax −∞ +∞ =
2 1 supeq1i sup −∞ +∞ * < = sup * <
3 mnfxr −∞ *
4 mnfnepnf −∞ +∞
5 ioopnfsup −∞ * −∞ +∞ sup −∞ +∞ * < = +∞
6 3 4 5 mp2an sup −∞ +∞ * < = +∞
7 2 6 eqtr3i sup * < = +∞