Metamath Proof Explorer


Theorem retancl

Description: The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion retancl A cos A 0 tan A

Proof

Step Hyp Ref Expression
1 recn A A
2 tanval A cos A 0 tan A = sin A cos A
3 1 2 sylan A cos A 0 tan A = sin A cos A
4 recoscl A cos A
5 resincl A sin A
6 redivcl sin A cos A cos A 0 sin A cos A
7 5 6 syl3an1 A cos A cos A 0 sin A cos A
8 4 7 syl3an2 A A cos A 0 sin A cos A
9 8 3anidm12 A cos A 0 sin A cos A
10 3 9 eqeltrd A cos A 0 tan A