Metamath Proof Explorer


Theorem retanhcl

Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion retanhcl A tan i A i

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn A A
3 mulcl i A i A
4 1 2 3 sylancr A i A
5 rpcoshcl A cos i A +
6 5 rpne0d A cos i A 0
7 tanval i A cos i A 0 tan i A = sin i A cos i A
8 4 6 7 syl2anc A tan i A = sin i A cos i A
9 8 oveq1d A tan i A i = sin i A cos i A i
10 4 sincld A sin i A
11 recoshcl A cos i A
12 11 recnd A cos i A
13 1 a1i A i
14 ine0 i 0
15 14 a1i A i 0
16 10 12 13 6 15 divdiv32d A sin i A cos i A i = sin i A i cos i A
17 9 16 eqtrd A tan i A i = sin i A i cos i A
18 resinhcl A sin i A i
19 18 5 rerpdivcld A sin i A i cos i A
20 17 19 eqeltrd A tan i A i