Metamath Proof Explorer


Theorem retopbas

Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007) (Proof shortened by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion retopbas ran . TopBases

Proof

Step Hyp Ref Expression
1 ioof . : * × * 𝒫
2 1 fdmi dom . = * × *
3 2 imaeq2i . dom . = . * × *
4 imadmrn . dom . = ran .
5 3 4 eqtr3i . * × * = ran .
6 ssid * *
7 6 qtopbaslem . * × * TopBases
8 5 7 eqeltrri ran . TopBases