Metamath Proof Explorer


Theorem retopconn

Description: Corollary of reconn . The set of real numbers is connected. (Contributed by Jeff Hankins, 17-Aug-2009)

Ref Expression
Assertion retopconn topGen ran . Conn

Proof

Step Hyp Ref Expression
1 retop topGen ran . Top
2 uniretop = topGen ran .
3 2 restid topGen ran . Top topGen ran . 𝑡 = topGen ran .
4 1 3 ax-mp topGen ran . 𝑡 = topGen ran .
5 iccssre x y x y
6 5 rgen2 x y x y
7 ssid
8 reconn topGen ran . 𝑡 Conn x y x y
9 7 8 ax-mp topGen ran . 𝑡 Conn x y x y
10 6 9 mpbir topGen ran . 𝑡 Conn
11 4 10 eqeltrri topGen ran . Conn