Metamath Proof Explorer


Theorem reu0

Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion reu0 ¬ ∃! x φ

Proof

Step Hyp Ref Expression
1 rex0 ¬ x φ
2 reurex ∃! x φ x φ
3 1 2 mto ¬ ∃! x φ