Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
reu4
Next ⟩
reu7
Metamath Proof Explorer
Ascii
Unicode
Theorem
reu4
Description:
Restricted uniqueness using implicit substitution.
(Contributed by
NM
, 23-Nov-1994)
Ref
Expression
Hypothesis
rmo4.1
⊢
x
=
y
→
φ
↔
ψ
Assertion
reu4
⊢
∃!
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∀
x
∈
A
∀
y
∈
A
φ
∧
ψ
→
x
=
y
Proof
Step
Hyp
Ref
Expression
1
rmo4.1
⊢
x
=
y
→
φ
↔
ψ
2
reu5
⊢
∃!
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∃
*
x
∈
A
φ
3
1
rmo4
⊢
∃
*
x
∈
A
φ
↔
∀
x
∈
A
∀
y
∈
A
φ
∧
ψ
→
x
=
y
4
3
anbi2i
⊢
∃
x
∈
A
φ
∧
∃
*
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∀
x
∈
A
∀
y
∈
A
φ
∧
ψ
→
x
=
y
5
2
4
bitri
⊢
∃!
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∀
x
∈
A
∀
y
∈
A
φ
∧
ψ
→
x
=
y