Metamath Proof Explorer


Theorem reu5

Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion reu5 ∃! x A φ x A φ * x A φ

Proof

Step Hyp Ref Expression
1 df-eu ∃! x x A φ x x A φ * x x A φ
2 df-reu ∃! x A φ ∃! x x A φ
3 df-rex x A φ x x A φ
4 df-rmo * x A φ * x x A φ
5 3 4 anbi12i x A φ * x A φ x x A φ * x x A φ
6 1 2 5 3bitr4i ∃! x A φ x A φ * x A φ