Metamath Proof Explorer


Theorem reu6i

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion reu6i B A x A φ x = B ∃! x A φ

Proof

Step Hyp Ref Expression
1 eqeq2 y = B x = y x = B
2 1 bibi2d y = B φ x = y φ x = B
3 2 ralbidv y = B x A φ x = y x A φ x = B
4 3 rspcev B A x A φ x = B y A x A φ x = y
5 reu6 ∃! x A φ y A x A φ x = y
6 4 5 sylibr B A x A φ x = B ∃! x A φ