Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
reu7
Next ⟩
reu8
Metamath Proof Explorer
Ascii
Unicode
Theorem
reu7
Description:
Restricted uniqueness using implicit substitution.
(Contributed by
NM
, 24-Oct-2006)
Ref
Expression
Hypothesis
rmo4.1
⊢
x
=
y
→
φ
↔
ψ
Assertion
reu7
⊢
∃!
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∃
x
∈
A
∀
y
∈
A
ψ
→
x
=
y
Proof
Step
Hyp
Ref
Expression
1
rmo4.1
⊢
x
=
y
→
φ
↔
ψ
2
reu3
⊢
∃!
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∃
z
∈
A
∀
x
∈
A
φ
→
x
=
z
3
equequ1
⊢
x
=
y
→
x
=
z
↔
y
=
z
4
equcom
⊢
y
=
z
↔
z
=
y
5
3
4
bitrdi
⊢
x
=
y
→
x
=
z
↔
z
=
y
6
1
5
imbi12d
⊢
x
=
y
→
φ
→
x
=
z
↔
ψ
→
z
=
y
7
6
cbvralvw
⊢
∀
x
∈
A
φ
→
x
=
z
↔
∀
y
∈
A
ψ
→
z
=
y
8
7
rexbii
⊢
∃
z
∈
A
∀
x
∈
A
φ
→
x
=
z
↔
∃
z
∈
A
∀
y
∈
A
ψ
→
z
=
y
9
equequ1
⊢
z
=
x
→
z
=
y
↔
x
=
y
10
9
imbi2d
⊢
z
=
x
→
ψ
→
z
=
y
↔
ψ
→
x
=
y
11
10
ralbidv
⊢
z
=
x
→
∀
y
∈
A
ψ
→
z
=
y
↔
∀
y
∈
A
ψ
→
x
=
y
12
11
cbvrexvw
⊢
∃
z
∈
A
∀
y
∈
A
ψ
→
z
=
y
↔
∃
x
∈
A
∀
y
∈
A
ψ
→
x
=
y
13
8
12
bitri
⊢
∃
z
∈
A
∀
x
∈
A
φ
→
x
=
z
↔
∃
x
∈
A
∀
y
∈
A
ψ
→
x
=
y
14
13
anbi2i
⊢
∃
x
∈
A
φ
∧
∃
z
∈
A
∀
x
∈
A
φ
→
x
=
z
↔
∃
x
∈
A
φ
∧
∃
x
∈
A
∀
y
∈
A
ψ
→
x
=
y
15
2
14
bitri
⊢
∃!
x
∈
A
φ
↔
∃
x
∈
A
φ
∧
∃
x
∈
A
∀
y
∈
A
ψ
→
x
=
y