Metamath Proof Explorer


Theorem reuanid

Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018)

Ref Expression
Assertion reuanid ∃! x A x A φ ∃! x A φ

Proof

Step Hyp Ref Expression
1 anabs5 x A x A φ x A φ
2 1 eubii ∃! x x A x A φ ∃! x x A φ
3 df-reu ∃! x A x A φ ∃! x x A x A φ
4 df-reu ∃! x A φ ∃! x x A φ
5 2 3 4 3bitr4i ∃! x A x A φ ∃! x A φ