Metamath Proof Explorer


Theorem reuanid

Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Assertion reuanid ∃! x A x A φ ∃! x A φ

Proof

Step Hyp Ref Expression
1 ibar x A φ x A φ
2 1 bicomd x A x A φ φ
3 2 reubiia ∃! x A x A φ ∃! x A φ