Metamath Proof Explorer


Theorem reubida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypotheses reubida.1 x φ
reubida.2 φ x A ψ χ
Assertion reubida φ ∃! x A ψ ∃! x A χ

Proof

Step Hyp Ref Expression
1 reubida.1 x φ
2 reubida.2 φ x A ψ χ
3 2 pm5.32da φ x A ψ x A χ
4 1 3 eubid φ ∃! x x A ψ ∃! x x A χ
5 df-reu ∃! x A ψ ∃! x x A ψ
6 df-reu ∃! x A χ ∃! x x A χ
7 4 5 6 3bitr4g φ ∃! x A ψ ∃! x A χ