Metamath Proof Explorer


Theorem reubidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996)

Ref Expression
Hypothesis reubidv.1 φ ψ χ
Assertion reubidv φ ∃! x A ψ ∃! x A χ

Proof

Step Hyp Ref Expression
1 reubidv.1 φ ψ χ
2 1 adantr φ x A ψ χ
3 2 reubidva φ ∃! x A ψ ∃! x A χ