Metamath Proof Explorer


Theorem reubidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Hypothesis reubidva.1 φ x A ψ χ
Assertion reubidva φ ∃! x A ψ ∃! x A χ

Proof

Step Hyp Ref Expression
1 reubidva.1 φ x A ψ χ
2 1 pm5.32da φ x A ψ x A χ
3 2 eubidv φ ∃! x x A ψ ∃! x x A χ
4 df-reu ∃! x A ψ ∃! x x A ψ
5 df-reu ∃! x A χ ∃! x x A χ
6 3 4 5 3bitr4g φ ∃! x A ψ ∃! x A χ