Metamath Proof Explorer


Theorem reubii

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999)

Ref Expression
Hypothesis reubii.1 φ ψ
Assertion reubii ∃! x A φ ∃! x A ψ

Proof

Step Hyp Ref Expression
1 reubii.1 φ ψ
2 1 a1i x A φ ψ
3 2 reubiia ∃! x A φ ∃! x A ψ