Metamath Proof Explorer


Theorem reubiia

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004)

Ref Expression
Hypothesis reubiia.1 x A φ ψ
Assertion reubiia ∃! x A φ ∃! x A ψ

Proof

Step Hyp Ref Expression
1 reubiia.1 x A φ ψ
2 1 pm5.32i x A φ x A ψ
3 2 eubii ∃! x x A φ ∃! x x A ψ
4 df-reu ∃! x A φ ∃! x x A φ
5 df-reu ∃! x A ψ ∃! x x A ψ
6 3 4 5 3bitr4i ∃! x A φ ∃! x A ψ