Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|
2 |
|
fveqeq2 |
|
3 |
1 2
|
anbi12d |
|
4 |
3
|
rspcv |
|
5 |
4
|
adantl |
|
6 |
|
simpl |
|
7 |
6
|
adantr |
|
8 |
|
simpl |
|
9 |
8
|
adantl |
|
10 |
|
simprr |
|
11 |
|
ccats1pfxeqrex |
|
12 |
7 9 10 11
|
syl3anc |
|
13 |
|
s1eq |
|
14 |
13
|
oveq2d |
|
15 |
14
|
eleq1d |
|
16 |
|
eqeq2 |
|
17 |
15 16
|
imbi12d |
|
18 |
17
|
rspcv |
|
19 |
|
eleq1 |
|
20 |
|
id |
|
21 |
20
|
imp |
|
22 |
21
|
eqcomd |
|
23 |
22
|
s1eqd |
|
24 |
23
|
oveq2d |
|
25 |
24
|
eqeq2d |
|
26 |
25
|
biimpd |
|
27 |
26
|
ex |
|
28 |
27
|
com13 |
|
29 |
19 28
|
sylbid |
|
30 |
29
|
com3l |
|
31 |
18 30
|
sylan9r |
|
32 |
31
|
com23 |
|
33 |
32
|
rexlimdva |
|
34 |
33
|
adantl |
|
35 |
34
|
adantr |
|
36 |
12 35
|
syld |
|
37 |
36
|
com23 |
|
38 |
37
|
ex |
|
39 |
5 38
|
syld |
|
40 |
39
|
com23 |
|
41 |
40
|
3imp |
|