Metamath Proof Explorer


Theorem reuen1

Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion reuen1 ∃! x A φ x A | φ 1 𝑜

Proof

Step Hyp Ref Expression
1 reusn ∃! x A φ y x A | φ = y
2 en1 x A | φ 1 𝑜 y x A | φ = y
3 1 2 bitr4i ∃! x A φ x A | φ 1 𝑜