Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
reueq
Next ⟩
rmoeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
reueq
Description:
Equality has existential uniqueness.
(Contributed by
Mario Carneiro
, 1-Sep-2015)
Ref
Expression
Assertion
reueq
⊢
B
∈
A
↔
∃!
x
∈
A
x
=
B
Proof
Step
Hyp
Ref
Expression
1
risset
⊢
B
∈
A
↔
∃
x
∈
A
x
=
B
2
moeq
⊢
∃
*
x
x
=
B
3
mormo
⊢
∃
*
x
x
=
B
→
∃
*
x
∈
A
x
=
B
4
2
3
ax-mp
⊢
∃
*
x
∈
A
x
=
B
5
reu5
⊢
∃!
x
∈
A
x
=
B
↔
∃
x
∈
A
x
=
B
∧
∃
*
x
∈
A
x
=
B
6
4
5
mpbiran2
⊢
∃!
x
∈
A
x
=
B
↔
∃
x
∈
A
x
=
B
7
1
6
bitr4i
⊢
B
∈
A
↔
∃!
x
∈
A
x
=
B