Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Assertion reueq1 A = B ∃! x A φ ∃! x B φ

Proof

Step Hyp Ref Expression
1 eleq2 A = B x A x B
2 1 anbi1d A = B x A φ x B φ
3 2 eubidv A = B ∃! x x A φ ∃! x x B φ
4 df-reu ∃! x A φ ∃! x x A φ
5 df-reu ∃! x B φ ∃! x x B φ
6 3 4 5 3bitr4g A = B ∃! x A φ ∃! x B φ