Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)

Ref Expression
Assertion reueq1 A = B ∃! x A φ ∃! x B φ

Proof

Step Hyp Ref Expression
1 rexeq A = B x A φ x B φ
2 rmoeq1 A = B * x A φ * x B φ
3 1 2 anbi12d A = B x A φ * x A φ x B φ * x B φ
4 reu5 ∃! x A φ x A φ * x A φ
5 reu5 ∃! x B φ x B φ * x B φ
6 3 4 5 3bitr4g A = B ∃! x A φ ∃! x B φ