Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)

Ref Expression
Assertion reueq1 A=B∃!xAφ∃!xBφ

Proof

Step Hyp Ref Expression
1 rexeq A=BxAφxBφ
2 rmoeq1 A=B*xAφ*xBφ
3 1 2 anbi12d A=BxAφ*xAφxBφ*xBφ
4 reu5 ∃!xAφxAφ*xAφ
5 reu5 ∃!xBφxBφ*xBφ
6 3 4 5 3bitr4g A=B∃!xAφ∃!xBφ