Metamath Proof Explorer


Theorem reueq1f

Description: Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses rmoeq1f.1 _ x A
rmoeq1f.2 _ x B
Assertion reueq1f A = B ∃! x A φ ∃! x B φ

Proof

Step Hyp Ref Expression
1 rmoeq1f.1 _ x A
2 rmoeq1f.2 _ x B
3 1 2 rexeqf A = B x A φ x B φ
4 1 2 rmoeq1f A = B * x A φ * x B φ
5 3 4 anbi12d A = B x A φ * x A φ x B φ * x B φ
6 reu5 ∃! x A φ x A φ * x A φ
7 reu5 ∃! x B φ x B φ * x B φ
8 5 6 7 3bitr4g A = B ∃! x A φ ∃! x B φ