Metamath Proof Explorer


Theorem reueqd

Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004)

Ref Expression
Hypothesis raleqd.1 A = B φ ψ
Assertion reueqd A = B ∃! x A φ ∃! x B ψ

Proof

Step Hyp Ref Expression
1 raleqd.1 A = B φ ψ
2 reueq1 A = B ∃! x A φ ∃! x B φ
3 1 reubidv A = B ∃! x B φ ∃! x B ψ
4 2 3 bitrd A = B ∃! x A φ ∃! x B ψ