Metamath Proof Explorer


Theorem reueubd

Description: Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis reueubd.1 φ ψ x V
Assertion reueubd φ ∃! x V ψ ∃! x ψ

Proof

Step Hyp Ref Expression
1 reueubd.1 φ ψ x V
2 df-reu ∃! x V ψ ∃! x x V ψ
3 1 ex φ ψ x V
4 3 pm4.71rd φ ψ x V ψ
5 4 eubidv φ ∃! x ψ ∃! x x V ψ
6 2 5 bitr4id φ ∃! x V ψ ∃! x ψ