Metamath Proof Explorer


Theorem reueubd

Description: Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis reueubd.1 φψxV
Assertion reueubd φ∃!xVψ∃!xψ

Proof

Step Hyp Ref Expression
1 reueubd.1 φψxV
2 df-reu ∃!xVψ∃!xxVψ
3 1 ex φψxV
4 3 pm4.71rd φψxVψ
5 4 eubidv φ∃!xψ∃!xxVψ
6 2 5 bitr4id φ∃!xVψ∃!xψ