Metamath Proof Explorer


Theorem reuhyp

Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)

Ref Expression
Hypotheses reuhyp.1 x C B C
reuhyp.2 x C y C x = A y = B
Assertion reuhyp x C ∃! y C x = A

Proof

Step Hyp Ref Expression
1 reuhyp.1 x C B C
2 reuhyp.2 x C y C x = A y = B
3 tru
4 1 adantl x C B C
5 2 3adant1 x C y C x = A y = B
6 4 5 reuhypd x C ∃! y C x = A
7 3 6 mpan x C ∃! y C x = A